A study, commissioned by DG Climate Action and jointly carried out by CE Delft, Tyndall Centre for Climate Change Research, Fraunhofer ISI, and Chalmers University of Technology, has highlighted the direct utilisation of wind for the propulsion of commercial ships in the form of wind-assisted shipping.
The study analyses wind as a renewable energy source for maritime transport and has the following objectives: the identification of barriers to the development and uptake of wind propulsion and possible actions to overcome these barriers, the estimation of the technologies’ market and emissions savings potential and the associated economic and social effects.
The study identifies a multitude of barriers that currently prevent the further development and uptake of wind propulsion technologies for ships; three key barriers thereby stand out:
- (Trusted) information on the performance, operability, safety, durability, and economic implications of the wind propulsion technologies.
- Access to capital for the development of wind propulsion technologies, especially for building and testing of full scale demonstrators.
- Incentives to improve energy efficiency/reduce CO2 emissions of ships.
These key barriers are interrelated in different ways, with the most crucial interaction being a chicken-and-egg problem between the first and second key barrier. In order to breach this chicken-and-egg problem, we see the development of a standardized method to assess wind propulsion technologies combined with test cases to develop this assessment method as the most important starting point for overcoming the barriers.
The study also identifies different actions that can be taken once a standardized assessment method has been developed. These actions aim at improving the generation of more information on the wind propulsion technologies, at improving the access to and value of this information, and at improving the access to capital for the development and testing of full scale demonstrators.
In order to determine the savings potentials, models have been developed for the different wind propulsion technologies. The models have been used to determine the technologies’ power savings for six sample ships across AIS-recorded voyage profiles and for sample routes, differentiating two speed regimes respectively.
The results indicate that the considered technologies can have significant savings potentials. More in specific, for the sample ships and selected wind propulsion technology dimensions, savings are found to be comparable for Flettner rotors and wingsails (5-18% in high speed scenario), with relative savings on the larger ships exceeding those on the smaller ships, especially for bulk carriers.
For towing kites relative savings (1-9% in high speed scenario) are, compared to rotors and wingsails, higher for smaller vessels and lower for larger vessels; relative savings are lowest for wind turbines (1-2% in high speed scenario). An important finding is that absolute savings are larger at the higher voyage speed for the wingsail and the rotor for all ship types considered.
Should some wind propulsion technologies for ships reach marketability in 2020, the maximum market potential for bulk carriers, tankers and container vessels is estimated to add up to around 3,700–10,700 installed systems until 2030, including both retrofits and installations on newbuilds, depending on the bunker fuel price, the speed of the vessels, and the discount rate applied.
The use of these wind propulsion systems would then lead to CO2 savings of around 3.5–7.5 Mt CO2 in 2030 and the wind propulsion sector would then be good for around 6,500–8,000 direct and around 8,500–10,000 indirect jobs.
Explore more in the study herebelow
Source: CE Delft